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Phase transition of a long polymer chain in dilute solution 
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Department of Physics, Division of Mechanics, University of Athens, Panepistimiopolis, 
Athens 621. Greece 

Received 6 March 1978 

Abstract. The trail problem, with attractive or repulsive interaction for double and triple 
occupancies of lattice sites, is solved exactly on a Bethe-type lattice of coordination number 
q = 6 .  The model shows a second-order phase transition from an ‘extended’ to a ‘conden- 
sed’ phase. The existence of this transition depends on the ratio r =  V ’ / V  of two 
interactions, one (V’)  associated with triple and the other (V)  with double occupancies. 

Recently similar models have been studied for discussing the transformation of a long 
polymer chain in dilute solution from an extended to a condensed phase due to intramole- 
cular forces. In the present model the condensed phase shows ‘frozen-in’behaviour only for 
a particular value ( r  = 2 )  of the interaction ratio r, whereas the general behaviour ( r  f 2 )  of 
the model casts doubts on the assumption that ‘frozen-in’ behaviour should be expected for 
the condensed phase of a polymer chain in a poor solvent. However, it is pointed out that 
infinite-dimensional Bethe lattices, although of theoretical interest, would not be expected 
to give a faithful representation of the collapse of a single polymer chain in three 
dimensions. 

1. Introduction 

In a lattice model a polymer chain is represented by a self-avoiding walk (SAW), i.e. a 
walk not involving double occupancy of any lattice site. The self-avoiding condition 
accounts in a simple way for the excluded volume effect of a polymer chain in solution 
(Domb 1969). The mutual interaction of polymer and solvent may be taken into 
account in a SAW model by introducing a Boltzmann weighting factor, w = 
exp(- V / k T ) ,  for each nearest-neighbour contact along the SAW, where V measures the 
energy of a polymer-polymer contact relative to the energy of a polymer-solvent 
contact, V being negative in a poor solvent (Fisher and Hiley 1961). A nearest- 
neighbour contact occurs if two indirectly bonded polymer segments occupy adjacent 
lattice sites. The configurational partition function of an N-stepped SAW is 

1 

where C , ,  is the number of SAW with t nearest-neighbour contacts. 
Recently it has been shown that the SAW problem shares many similarities with 

another lattice problem, the so called ‘trail’ problem (Malakis 1975,1976). In the latter 
the self-avoiding condition of the walk is replaced by the condition that no lattice edge 
occurs (or is visited) more than once. In  a trail a lattice site may be visited several times, 
the maximum number of times depending on the coordination number q of the lattice, 
thus allowing for single and double occupancy if q = 4, single, double and triple 
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occupancy if 4 = 6 and so on. Massih and Moore (1975) have employed the trail model 
on a triangle cactus Bethe lattice, which is an infinite-dimensional lattice (see figure 
l (a)) ,  to simulate the physics of a polymer chain in a poor solvent. They use the term 
‘crossing’ model in place of trail model. Massih and Moore state: ‘We believe that the 
crossing model on a tetrahedral lattice captures the physics of a polymer chain in 
solution as satisfactorily as does the Orr model’ (i.e. the SAW model with an attractive 
interaction for each nearest-neighbour contact). 

l a )  I b l  

Figure 1. ( a )  The cactus Bethe lattice with q = 4, used by Massih and Moore (1975). ( b )  
Bethe-type lattice with q = 6, used in this paper. Note that the lattice ( a )  is composed of 
3-cycles, whereas lattice ( b )  i s  composed of 2-cycles and that no other elementary cycles 
occur in the lattices shown. Both lattices are infinite dimensional. 

If 4 = 4 the partition function of an N-stepped trail is also given by (1. l), where now 
CN,t is the number of trails with t double occupancies (crossings or touchings) and w is 
the Boltzmann weighting factor for each double occupancy. Hence, a double occu- 
pancy in the trail problem is thought to correspond to a nearest-neighbour contact in the 
SAW problem. For 4 = 6 we may generalise (1.1) as follows 

where w and 7 are the Boltzmann weighting factors corresponding to double and triple 
occupancies (w = exp(- V / k T ) ;  77 = exp(- V’ lkT) ) ,  and CN,dTt  is the number of N- 
stepped trails having d double and t triple occupancies. It is convenient to work with 
the generating function G ( z ,  w, 77): 

W 

and seek to obtain an expression for G(z, w, v), then QN(w, 7) may be obtained by the 
inversion formula 

In this paper an infinite-dimensional lattice with 4 = 6 ,  will be employed to study the 
partition function QN(w, 7) of the trail model. The lattice we shall be using is shown in 
figure l (6) .  In 0 2 we derive G ( z ,  w, 7) and carry out a brief analysis of its main 
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singularities. The results of 0 2 are then used to describe the transition features of the 
model in § 3. Finally, in § 4 we present a discussion on the phase transition of a long 
polymer chain in a poor solvent and compare our results with previous work. 

2. Derivation of the generating function 

In  order to obtain G ( t ,  w, 77) it is convenient to define A(z, w, 77): 

where 3 a N , d , t  is the number of N-stepped trails which return to the origin, their starting 
point, for the first time having d double and t triple occupancies. Let also 77 = uw2,  then 
it can be shown that A(z, w, U )  satisfies: 

A = 2wr2(1 + 2 A  +2uA2) 
Hence, 

A =  
1 - 4 ~ t ~ - [ 1 - 8 ~ t ~ - 1 6 ~ ~ ( 2 ~ - 1 ) ~ ~ ] ~ / ~  

8wuz2 

= 2wt2 + 8w2z4 + 16(2 + u ) w 3 z 6 +  64(2+ 3 u ) w 4 r 8  

+ 2 5 6 ( 2 + 6 ~ + ~ ~ ) ~ ~ ~ " + .  * * . (2.3) 
Given A(z, w, U), the generating functions for trails which terminate L steps from the 
origin, GL = GL(z,  w, U )  ( L  = 0 ,1 ,2 ,  . . . ), are given by Go = 3A(1+2A +2uA2) 

(2.4) GL = 6 .4L- '~L(A + l)L-l(l + 2A + ~ u A ~ ) ~  L =  1 , 2 , .  . . . 
Thus the total generating function G(z, w, U )  is 

62 ). (2.5) 
m A2  

L = l  ~ W Z  2 W Z * [ ~  - 4z (A + l)] 
G ( z ,  w, U)= Go+ 1 G L = 7 ( 3 +  

Substituting the expression (2.3) for A( r ,  w, U )  we find: 

F ~ ( ~ ,  W ,  u ) + F ~ ( z ,  W ,  ~ ) [ i - 8 ~ 2 ~ - 1 6 ~ ~ ( 2 ~  - 1 ) ~ ~ ] l / ~  
G ( z ,  w, U )  = 3 2 ~ ~ ~ ~ ~ ~ ( - 4 ~ ( 2 ~ - 1 ) ~ ~ + 2 ~ ~ ~ - 1 + [ 1 - 8 ~ ~ ~ - 1 6 ~ ~ ( 2 ~ - l ) t  4 ] 1/2 ) 

(2.6) 
where, 

F~(z, W, U )  = 96w3(2u2 - 5~ + 2)z6+48w3u(l - u ) t 5  + 24w2(-2u2+ 9~ - 6 ) ~ ~  

- 24w2ut3 + 36w(l-  u ) t 2  + 3wut - 3( 1 - U )  (2.7) 
F~(z, W, U )  = 24w2(2 - 3u) t4  + 12w2uz3- 24w(l -  u ) z 2  - ~ W U Z  + 3(1 -U). 

For large values of N, the behaviour of Q N ( w ,  U )  is determined by  the singularity of 
G(z, w, U )  nearest to the origin in the complex t plane. By (2.6) it is seen that the 
singularities of G(z ,  w, U )  are the roots of the term D+(z, w, U )  in the denominator and 
the branch cuts from the term R ( z ,  w, U), where 

and (2.8) 
R ( Z ,  W, U )  = [I -8wz2- i6w2(2u - i)t4]1/2 

D,(z, W ,  u ) = - ~ w ( ~ u - ~ ) z ~ + ~ w u z - ~ * R ( z ,  W, U). 
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Let a(w, U )  denote the root of D+(z,  w, U )  nearest to the origin so that 

D+(a(w, U), w, U )  = 0 (2.9) 

and 

b(w, U )  = [4w(2w)’l2+ 1]-’/’ (2.10) 

so that 

R(b(w, U), w, U )  = 0. (2.11) 

We shall set V ’ =  rV, hence, 
q = w r = u w  2 I$ uzwr-2.  (2.12) 

For a specified value of r, a(w, U )  and b(w ,  U )  are functions of w only (i.e. a(w, U )  = 
a ( w )  and b(w, U )  = b(w)). If wc denotes the ‘critical’ value of w for which a ( w )  = b(w), 
then wc is obtained from (2.13): 

D+(b(w,), wc) = 0.  (2.13) 

The latter is equivalent to: 

w;-’ -2JZw;-2’/2 - 2 = 0 .  (2.14) 

(2.14) has a positive real solution w, for any value of r not in (0, 1) (i.e. r < 0 or r > 1). 
For instance let r = 2, then 

~ , = 2 ( & + 1 ) = 4 * 8 2 8 4 . .  , . (2.15) 

In particular for r > 1 we have w,> 1 and 

lim w c =  1 3 lim T,= a; lim w , = W  j lim T,=O. 

On the other hand for r < 0 we have w c  < 1 (so that V > 0, V’ < 0) and 

lim w c = l  + lim T , = m ;  lim w c = O  + lim T,=O 

r-w r-00 r + l +  r + l +  

r+-m r+-w r - 0 -  r+O- 

(2.16) 

(2.17) 

where w, = exp(- VlkT,). 
Finally we note that if V = 0 and V ‘  # 0, that is if a Boltzmann weighting factor is 

attributed to triple occupancies only ( w  = 1, q f l ) ,  then corresponding to (2.14) we 
find: 

77,-2J2qc-2 = 0 

with the positive real solution: 

q c = 6 + 4 J z = 1 1 * 6 5 6 8 5 . .  , , 

(2.18) 

(2.19) 

3. Transition features 

In the previous section it was shown that for a value of r not in (0 ,  1) there exists a w, at 
which 

a ( w J  = b(wc). (3.1) 
Furthermore it can be shown that for Iln(w)l> Iln(w,)l the dominant singularity of 
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G(z, w, u(w))  is b(w) whereas for Iln(w)l< Iln(w,)l the dominant singularity of 
G ( z ,  w, u(w)) is Q ( w ) .  The free energy, entropy and specific heat (per link) of the 
system are given, in the limit of N + CO, by 

SIN = -a(F/N)/aT (3.4) 

CIN = Ta(S/N)/aT. (3.5) 
Thus the entropy and specific heat may be obtained by using (3.2)-(3.5), (2.10), whereas 
the value of a ( w )  is found numerically from (2.9) or by solving 
D+(z, w, u(w))D-(z, w, u(w)) = 0 which is reduced to a cubic equation. Following 
Massih and Moore (1975) we have shown (for any value of r) that: 

Namely, the entropy is continuous at T, (see figures 2(a)-6(a)). A discontinuity occurs 
in the second derivative of the free energy (see figures 2(6)-6(6)). We have a 
second-order transition in the Ehrenfest sense. The system undergoes a phase trans- 
formation from a 'condensed' phase (T < T,) to an 'extended' phase (T > T,) at T = T,. 

First let us consider the condensed phase and study its specific heat. Since the free 
energy is given by (3.3) we obtain (using (3.4) and (3.5)): 

and employing (2.10) for b(w) we find: 

I I '0 1 2 3 L O  1 2 3 
T /  T, T / T ,  

Figure 2. ( a )  Configurational entropy per link S / k N  as a function of temperature T/T,  (in 
the limit of an infinite chain) for r = 2. In this case 'frozen-in' behaviour is observed. ( b )  
Specific heat per link C / k N  against T/Tc.  
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1.61 

1 
T /  T, 

0. 

T /  T, 

Figure 3. ( a )  Plot of S/ kN against T/ T,  for r = -1. ( b )  Plot of C/ kN against T/ T, for r = -1 
(typical curves for r l  < I < 0 or for 1 < I < 12 ,  where T,,, > T,). 

Figure 4. ( a )  Plot of S / k N  against T / T ,  for r = 6. ( b )  Plot of C / k N  against T/T,  for r = 6. 
Typical curves for r < rl or r > r 2 ,  where T,,, < T,. 

We observe that for r = 2 (i.e., 77 = w’) 

CIkN = 0 for T < T, (condensed phase). (3.9) 

That is for r = 2 the configurations in the condensed phase are ‘frozen in’ (figures 2(a ) ,  
(b ) ) .  Both Massih and Moore (1975) and Morita (1976) found ‘frozen-in’ behaviour in 
similar models. Nevertheless in our model ‘frozen-in’ behaviour is a special case ( r  = 2). 
To see the more general behaviour let 

= Ju = w(r-’)/’ (3.10) 

then 

C 
- = 4&(ln(x))’( 
kN (4x’ + 2 4 ~ ) ’  

(3.11) 
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1. 

5 
\ 
v) 

0 

Figure 5. ( a )  Plot of SIkN against TIT, for r = 1.5.  ( b )  Plot of CIkN against TIT, for 
r = 1.5. Note that here CIkN shows maxima in both condensed and extended phases; this 
may occur for certain values of r. 

& 5 13: 
I 

I t  
I t- 
L 

O 7~ 

Figure 6. ( a )  Plot of SlkN against TIT, for the case where w = 1. (Here a Boltzmann 
weighting factor 7 z= 1 is attributed to triple occupancies only.) ( b )  Plot of C / k N  against 
TI Tc. 

The specific heat obeys a (relative) maximum, as a function of x ,  when 

= 0. d ( C / k N )  
dx 

The condition for a maximum yields: 

4x In(x)-4x-2 ln(x) -2J2=0 

which obeys the solutions 

XI = 10.0134. . . 
~2 = 0.0807 . . . 

r > 2  or r<O 

l < r < 2 .  

(3.12) 

(3.13) 

(3.14) 

(3.15) 
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The maximum value of the specific heat in the condensed phase is 

(C/kN), , ,=0*1635. .  . r > 2  or r<O (3.16) 

(C/kN), , ,=0*2912. .  . l < r < 2 .  (3.17) 

This difference in (C/kN),,, reflects the fact that at sufficiently low temperatures triple 
occupancies are favoured when r > 2 or r < 0, whereas double occupancies are favoured 
when 1 < r < 2 ,  the condensed phases are essentially different for these two cases. 
The temperature T,  at which this maximum of the specific heat is obeyed is given by 

V (r-22) f o r r > 2  

V ( 2 - r )  
k 2 In(xl) 

T,={ -~ for r < O  (3.18) 

V ( r - 2 )  
k 2 ln(xz) 

for l < r < 2 .  

Of course, if T, < T,  the maximum of the specific heat in the condensed phase will not 
occur since at T, the system will be transformed to an extended phase and change 
essentially in behaviour. Consider as an example the case r = -1 (figures 3 ( u ) ,  ( b ) ) ,  then 
(2.14) gives w,=O.1181. .  . , hence, 

T C = 0 * 4 6 8 . .  . ( V / k )  (3.19) 

whereas from (3.18) 

T ,=0 .651 . .  . ( V / k ) .  (3.20) 

As we change the value of r, T, and T,  may change their relative positions so that 
T,< T,. I t  is possible to calculate the value of r at which T,  = T,, indeed this value is 
determined by 

(3.21) 

where x = x1 or x = XZ, the corresponding values of r being 

=-le906 . . . rz = 1.266 . . . . (3.22) 

I t  follows that T,< T, for r < r l  or r > r2  (see figures 4 ( u ) ,  (6) and 5 ( u ) ,  ( b ) )  and that 
T,> T, for rl < r < 0 (figures 3 ( u ) ,  (6)) or 1 < r < r2. For certain values of r the specific 
heat may show a (relative) maximum in the extended phase as well. Although it is 
possible to specify the range of r for which this may occur, we shall not consider this 
further. However, an example where the specific heat shows maxima in both extended 
and condensed phases is given in figures 5(u) ,  ( b )  for the case where r = 1.5. A 
maximum of the specific heat in  the extended phase has also been reported by Morita 
(1976) .  

Last consider the system when w = 1. The specific heat of the condensed phase is 
now given by 

(3.23) 
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The maximum of C/kN is obeyed at 

T m = 0 * 2 1 7 . .  . ( - V ’ / k )  (3.24) 

and 

(C/kN),,,=0*1635.. . . (3.25) 

From (2.19) we find T,= 0.407 . . . ( - V ’ / k )  so that T,< T,. Figures 6(a) ,  ( b )  shows 
the entropy and the specific heat of the system for this case. 

4. Discussion 

An exactly solvable model showing a phase transition of second order has been 
presented. Similar models were previously solved by Massih and Moore (1975) and 
Morita (1976). All these models share the same defect, namely the lattices used are 
infinite dimensional. Since dimensionality is of primary importance in the theory of 
phase transitions, any conclusions drawn from such models concerning their two- and 
three-dimensional counterparts should be tentative. There have been conflicting views 
in the literature concerning the order of the transition of a long polymer chain in  a poor 
solvent. Domb (1974), Edwards (1970) and Lifshitz (1969) have argued that the 
transition should be first order. On the other hand the only solvable models up to now 
are infinite dimensional and show that the transition is of second order (Massih and 
Moore 1975, Morita 1976, and this paper). Nevertheless, it should be stressed that 
infinite-dimensional Bethe-type lattices have been used repeatedly in the past, but i t  is 
now generally accepted that they are not adequate representations for their finite- 
dimensional counterparts (Nagle 1974). 

Our model shows a variety of behaviour in the condensed phase and clarifies how 
the ‘frozen-in’ behaviour is obtained (see equation (3.8)). When r = 2 both double and 
triple occupancies contribute to the entropy of the lowest energy state. The system is 
transformed at T, to this lowest energy state. If r > 2 or r < 0 or w = 1 and 7 3 1 only 
triple occupancies contribute to the entropy of the lowest energy state, as a result, the 
residual entropy of the system is highly reduced and this reduction seems to be 
responsible for the change of the behaviour in the condensed phase. The system is first 
transformed to an intermediate energy state at T, and then it  is cooled continuously to 
the lowest energy state. The same applies for 1 < r < 2 with the difference that now only 
double occupancies contribute to the entropy of the lowest energy state. Another 
interesting feature of the model is that for 0 < r < 1 there is no transition, in this case the 
transformation from the extended to the condensed phase takes place in a continuous 
manner (see figures 7(a) ,  (b ) ) .  

Let us now comment on the fact that our lattice has multiple edges (lines). This is by 
no means a deficiency of the model since its covering lattice has no multiple edges. The 
trail problem on the lattice shown in figure l (b )  may be thought to be equivalent to the 
SAW problem on its covering lattice. The correspondence between trails on a lattice and 
SAW on its covering can be made one-to-one by close-orienting the lattices (Malakis 
1975, 1976). In order to clarify’this point, we may assume that a direction is assigned to 
every line in the lattice graph shown in figure 1(6), so that every point has the same 
out-degree as its in-degree (where the out-degree (in-degree) of a point P is the number 
of directed lines having P as their starting (end) point) and let the so-oriented graph be 
denoted by G. The covering graph G‘of the graph G is defined as follows: ( a )  to every 
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/ 

i 
1 

cos t 

0-L ' 

5 ,  
U' 

0.2. 

0 i/ 1 2 

cos t 

Figure 7. ( a )  Plot of S / k N  as afunction of temperature for r = f (i.e. q = J w  and w 2 1). ( b )  
Plot of C / k N  as a function of temperature for r = f. Typical curves for 0 < r < 1, where the 
transformation from the condensed to an extended phase takes place continuously. 

line of G there corresponds a point in G'; and ( b )  two points of G' are connected by a 
line from one point to the other if the corresponding lines of G are consecutive. Then it 
can be shown that there is a one-to-one correspondence between trails of N steps on G 
and SAW of N - 1 steps on G'. Furthermore, each double occupancy along a trail on G 
yields one nearest-neighbour contact along the corresponding SAW on G', whereas 
each triple occupancy of a trail on G yields three nearest-neighbour contacts along the 
SAW on G'. Thee above argument would suggest that r = 3. Nevertheless, since for the 
unoriented case there is no simple relation between trails on a lattice and SAW on its 
covering lattice it is preferable to treat r as variable. Finally, we note that a closed- 
orientation on the lattice of figure l ( b )  will not change the transition features of our 
model, the same is true for the model studied by Massih and Moore (1975) using the 
lattice of figure l (a ) .  
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